Terraform vs. Ansible: Explaining
Infrastructure & Configuration

Exploring two powerful DevOps tools for IT automation.
Understanding their distinct roles in modern IT landscapes.

Essential for cloud infrastructure and application management in India.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Introduction: The DevOps Tooling Landscape

Terraform Ansible

An Infrastructure as Code (IaC) tool primarily used for provisioning and A powerful automation engine for configuration management, application
managing cloud and on-premise infrastructure. It defines resources in a deployment, and orchestration. It manages existing infrastructure with a
declarative language. procedural approach.

Both Terraform and Ansible are critical tools that streamline operations and enhance efficiency, though they address different layers of the IT stack in the

DevOps pipeline.
o i conorn

https://gamma.app/?utm_source=made-with-gamma

Terraform: Your Infrastructure Provisioner

Purpose Language Nature

Primarily for provisioning and managing Uses HashiCorp Configuration Language Declarative approach where you define the

infrastructure like servers, networks, and (HCL), a human-readable language designed desired "what" state of your infrastructure,

databases across various cloud providers. for defining infrastructure. and Terraform figures out "how" to achieve
it.

State Tracking Idempotency

Maintains a state file (local or remote) to keep track of the deployed Built-in characteristic; running the same configuration multiple times

infrastructure and its current configuration. will always yield the same result without unintended side effects.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Ansible: Your Configuration & Deployment Manager

Purpose Language Nature

Focused on automating configuration Uses YAML for writing Playbooks, which are Mostly procedural; Playbooks describe a
management, software provisioning, and simple, human-readable files describing sequence of "how" tasks should be executed
application deployment on existing automation tasks. step-by-step on target systems.
infrastructure.

State Tracking Idempotency

Stateless by default, meaning it doesn't maintain a persistent record of Achieved through careful module usage and task design, ensuring

the managed systems' state, though Ansible Tower/AWX can add state repeated execution of tasks doesn't cause unintended changes.
management.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Feature Comparison: The Core Differences (Part 1)

Purpose Infrastructure provisioning Configuration management & app deployment
Language HashiCorp Configuration Language (HCL) YAML (Playbooks)

Nature Declarative (what you want) Mostly procedural (how you want to do it)
Connectivity Uses cloud APIs directly Uses SSH/WinRM

This table highlights the fundamental distinctions in purpose, language, and operational nature between Terraform and Ansible, along with their
connectivity methods.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Feature Comparison: The Core Differences (Part 2)

State tracking Maintains state (local or remote) Stateless (unless using Ansible Tower/AWX)
Idempotency Built-in Achieved via careful module usage
Use Case Create infrastructure (VMs, networks, cloud setup) Configure servers (install packages, manage users, etc.)

This section continues the comparison, focusing on how each tool handles state, ensures idempotency, and their primary use cases in a DevOps
workflow.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Core Use Cases: When to Pick
Terraform

Terraform is the go-to tool when your primary objective is to define, provision, and
manage the underlying infrastructure itself.

* Provision servers, databases, storage, networking on AWS, Azure, GCP.

» Infrastructure as Code (laC) : Define and manage your entire infrastructure using
version-controlled code, enabling consistent and repeatable deployments. ,/f | R\\

e Multi-cloud orchestration : Seamlessly provision and manage resources across
different cloud providers from a single configuration.

* Version-controlled infrastructure deployments : Track changes, rollback, and
collaborate on infrastructure definitions like software code.

e Cost Optimization : Utilise its planning capabilities to preview infrastructure changes
and associated costs before application, preventing unexpected expenditures.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Core Use Cases: When to Pick Ansible

Ansible shines when you need to automate the configuration and deployment of software on existing infrastructure, whether it's on-premises or in the
cloud.

e Server setup : Automate the installation and configuration of software like Nginx, Docker, databases, or specific applications on your servers.

* Configuration enforcement : Ensure consistency across your server fleet by managing file permissions, firewall rules, service states, and system-wide
settings.

» Application deployment : Streamline the process of deploying new application versions, managing dependencies, and restarting services.
e CI/CD automation : Integrate seamlessly into your Continuous Integration/Continuous Deployment pipelines for automated builds and releases.

» Patch management : Automate the process of applying security patches and software updates across your entire server infrastructure, reducing
manual effort and ensuring security compliance.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Basic Example: Terraform Provisioning AWS EC2 Instance

Here's a simplified look at how Terraform provisions a basic EC2 instance on AWS:

resource "aws_instance" "web_server" {
ami = "ami-O0abcdef1234567890" # Example AMI ID
instance_type = "t2.micro"

tags = {
Name = "MyWebAppServer"
}
}

» Define AWS provider and region : Implicitly configured in a separate “provider™ block for resource deployment.

e Specify ‘aws_instance’ resource type : Declares the creation of an EC2 instance.

e Select an Amazon Machine Image (AMI) : E.g., "ami-0abcdef1234567890" defines the OS and software.
e Assign ‘instance_type’ : For instance, 't2.micro’ for cost-effectiveness.

e Add ‘tags’ : Like 'Name = "MyWebAppServer" for easy identification and management.

e Command : Execute "terraform init" to initialise the directory, then “terraform apply" to provision the instance.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Conclusion: Synergistic Tools for Modern DevOps

Distinct Roles, Unified Goal

e Terraform excels at "building" infrastructure from the ground up.

e Ansible is the master of "configuring" and maintaining software on
that infrastructure.

Better Together

They are often used in tandem: Terraform provisions the virtual machines,
and Ansible then configures the necessary software and applications on
those VMs.

The choice depends on the specific task: laC for infrastructure provisioning, Playbooks for configuration and deployment. Both empower automation and

efficiency, crucial for Indian tech firms navigating complex cloud environments.
[Made with GAMINMA]

https://gamma.app/?utm_source=made-with-gamma

