
Terraform vs. Ansible: Explaining
Infrastructure & Configuration
Exploring two powerful DevOps tools for IT automation.

Understanding their distinct roles in modern IT landscapes.

Essential for cloud infrastructure and application management in India.

https://gamma.app/?utm_source=made-with-gamma

Introduction: The DevOps Tooling Landscape

Terraform

An Infrastructure as Code (IaC) tool primarily used for provisioning and
managing cloud and on-premise infrastructure. It defines resources in a
declarative language.

Ansible

A powerful automation engine for configuration management, application
deployment, and orchestration. It manages existing infrastructure with a
procedural approach.

Both Terraform and Ansible are critical tools that streamline operations and enhance efficiency, though they address different layers of the IT stack in the
DevOps pipeline.

https://gamma.app/?utm_source=made-with-gamma

Terraform: Your Infrastructure Provisioner

Purpose
Primarily for provisioning and managing
infrastructure like servers, networks, and
databases across various cloud providers.

Language
Uses HashiCorp Configuration Language
(HCL), a human-readable language designed
for defining infrastructure.

Nature
Declarative approach where you define the
desired "what" state of your infrastructure,
and Terraform figures out "how" to achieve
it.

State Tracking
Maintains a state file (local or remote) to keep track of the deployed
infrastructure and its current configuration.

Idempotency
Built-in characteristic; running the same configuration multiple times
will always yield the same result without unintended side effects.

https://gamma.app/?utm_source=made-with-gamma

Ansible: Your Configuration & Deployment Manager

Purpose
Focused on automating configuration
management, software provisioning, and
application deployment on existing
infrastructure.

Language
Uses YAML for writing Playbooks, which are
simple, human-readable files describing
automation tasks.

Nature
Mostly procedural; Playbooks describe a
sequence of "how" tasks should be executed
step-by-step on target systems.

State Tracking
Stateless by default, meaning it doesn't maintain a persistent record of
the managed systems' state, though Ansible Tower/AWX can add state
management.

Idempotency
Achieved through careful module usage and task design, ensuring
repeated execution of tasks doesn't cause unintended changes.

https://gamma.app/?utm_source=made-with-gamma

Feature Comparison: The Core Differences (Part 1)

Purpose Infrastructure provisioning Configuration management & app deployment

Language HashiCorp Configuration Language (HCL) YAML (Playbooks)

Nature Declarative (what you want) Mostly procedural (how you want to do it)

Connectivity Uses cloud APIs directly Uses SSH/WinRM

This table highlights the fundamental distinctions in purpose, language, and operational nature between Terraform and Ansible, along with their
connectivity methods.

https://gamma.app/?utm_source=made-with-gamma

Feature Comparison: The Core Differences (Part 2)

State tracking Maintains state (local or remote) Stateless (unless using Ansible Tower/AWX)

Idempotency Built-in Achieved via careful module usage

Use Case Create infrastructure (VMs, networks, cloud setup) Configure servers (install packages, manage users, etc.)

This section continues the comparison, focusing on how each tool handles state, ensures idempotency, and their primary use cases in a DevOps
workflow.

https://gamma.app/?utm_source=made-with-gamma

Core Use Cases: When to Pick
Terraform
Terraform is the go-to tool when your primary objective is to define, provision, and
manage the underlying infrastructure itself.

Provision servers, databases, storage, networking on AWS, Azure, GCP.

Infrastructure as Code (IaC) : Define and manage your entire infrastructure using
version-controlled code, enabling consistent and repeatable deployments.

Multi-cloud orchestration : Seamlessly provision and manage resources across
different cloud providers from a single configuration.

Version-controlled infrastructure deployments : Track changes, rollback, and
collaborate on infrastructure definitions like software code.

Cost Optimization : Utilise its planning capabilities to preview infrastructure changes
and associated costs before application, preventing unexpected expenditures.

https://gamma.app/?utm_source=made-with-gamma

Core Use Cases: When to Pick Ansible
Ansible shines when you need to automate the configuration and deployment of software on existing infrastructure, whether it's on-premises or in the
cloud.

Server setup : Automate the installation and configuration of software like Nginx, Docker, databases, or specific applications on your servers.

Configuration enforcement : Ensure consistency across your server fleet by managing file permissions, firewall rules, service states, and system-wide
settings.

Application deployment : Streamline the process of deploying new application versions, managing dependencies, and restarting services.

CI/CD automation : Integrate seamlessly into your Continuous Integration/Continuous Deployment pipelines for automated builds and releases.

Patch management : Automate the process of applying security patches and software updates across your entire server infrastructure, reducing
manual effort and ensuring security compliance.

https://gamma.app/?utm_source=made-with-gamma

Basic Example: Terraform Provisioning AWS EC2 Instance
Here's a simplified look at how Terraform provisions a basic EC2 instance on AWS:

resource "aws_instance" "web_server" {
 ami = "ami-0abcdef1234567890" # Example AMI ID
 instance_type = "t2.micro"

 tags = {
 Name = "MyWebAppServer"
 }
}

Define AWS provider and region : Implicitly configured in a separate `provider` block for resource deployment.

Specify `aws_instance` resource type : Declares the creation of an EC2 instance.

Select an Amazon Machine Image (AMI) : E.g., `ami-0abcdef1234567890` defines the OS and software.

Assign `instance_type` : For instance, `t2.micro` for cost-effectiveness.

Add `tags` : Like `Name = "MyWebAppServer"` for easy identification and management.

Command : Execute `terraform init` to initialise the directory, then `terraform apply` to provision the instance.

https://gamma.app/?utm_source=made-with-gamma

Conclusion: Synergistic Tools for Modern DevOps

Distinct Roles, Unified Goal

Terraform excels at "building" infrastructure from the ground up.

Ansible is the master of "configuring" and maintaining software on
that infrastructure.

Better Together

They are often used in tandem: Terraform provisions the virtual machines,
and Ansible then configures the necessary software and applications on
those VMs.

The choice depends on the specific task: IaC for infrastructure provisioning, Playbooks for configuration and deployment. Both empower automation and
efficiency, crucial for Indian tech firms navigating complex cloud environments.

https://gamma.app/?utm_source=made-with-gamma

